
Data Preparation 1

Put Danny's XML .refactorings data into the following tables:

Table: eclipse_dev_tool_usage

refactoring
_id

userid description project flags refactoring_
name timestamp comment

1 pdobrev
Extract
method
'packLater'

org.eclipse... 589830
org.eclipse.
jdt.ui.extract.
method

1/1/2007 Extract
method...

* make different table with project names?

Table: eclipse_dev_tool_usage_attributes

refactoring_id attribute value

1 visibility 2

Hypothesis 13: eclipse devs different from other devs

The kinds of refactorings done with tools by Eclipse core developers differ from
those done by Eclipse users.

Produce a histogram of refactorings from Danny's data set using:

SELECT refactoring_name,COUNT(refactoring_name) eclipse_dev_tool_usage
GROUP BY refactoring_name

Produce a similar histogram using Gail Murphy's data set. Compare the results, possibly
performing statistical test.

Cross Validation

Compare to a histogram from the Eclipse Usage Collector.

Hypothesis 4: Tool Configuration

Programmers do not provide configuration information for their refactoring tools
frequently.

Needs eclipse_dev_tool_usage

1. Divide refactorings into tool type (from 'id' attribute).

2. For each tool type, divide instantiations into the following buckets:
• No configuration (programmer just accepts refactoring defaults)
• Configuration by name-only (programmer changes new element names)
• Other configuration (programmer changes any other configuration)

• Report the results as stacked, 100% bar chart, with 1 bar for each tool.
• The hypothesis predicts that "other configuration" will be quite small for each tool.

Hypothesis 9: Refactoring Grouping

Refactorings of the same type often occur close together temporally, such as
two back-to-back Extract Local Variable refactorings.

Needs eclipse_dev_tool_usage, eclipse_dev_tool_usage_attributes

1. Divide refactorings into tool type.
2. Report what percentage of same-kind refactorings appear within a 1-minute window

of each other for all groups combined.
3. The hypothesis predicts that most refactorings will appear in windows (this was

almost true in Murphy's data set).

Cross-validation

This has already been cross-validated with Murphy's data set. If I recall correctly, about
48% of refactorings appeared as part of a group.

Data Preparation 2

Next we need to inspect actual source code to infer refactorings. In preparation, we'll have
to find the range of dates for which we have logs, for each developer:

SELECT userid,project,MIN(timestamp) as firstRefactoringToolUsage,
MAX(timestamp) as lastRefactoringToolUsage
FROM eclipse_dev_tool_usage
GROUP BY userid,project

View: eclipse_dev_date_range

userid project firstRefactoringToolUsage lastRefactoringToolUsage

pdobrev org.eclipse... 12:00:00 12/1/2007 12:00:00 6/1/2008

Hypothesis 3: decreased refactoring before code release

The quantity of refactorings decrease a code release approaches.

Use eclipse_dev_date_range to find some milestone(s) in the Eclipse release, hopefully both
major and minor ones that fall within the refactoring tool range. Create a time plot with
eclipse_dev_tool_usage with time buckets on the x axis and refactoring counts on the y
axis. There may be a more conise way to summarize this, but this will at least let us
explore patterns.

Cross-validation

This may be cross-validated with Xing and Stroulia's data set, but may be somewhat
unbelievable because they both apply to Eclipse.

Weissgerber's data should be quite promising, though. In fact, I've already begun this in the
query "Refactorings Query," without yet looking at release points. It should just require
some fiddling.

Data Preparation 3

Then, based on eclipse_dev_tool_usage, find which projects each developer committed to,
and the commit dates for each project based on CVS history:

Table: eclipse_dev_commits

userid timestamp version project file comments

pdobrev 12:00:31
12/1/2007 1.1 org.eclipse.core src/edu/.../

Workspace.java
Renamed big
class...

* eclipse_dev_commits.project is not necessarily the same as
eclipse_dev_tool_usage.project (the programmer may have renamed the project after
checking it out), but we'll cross that bridge when we come to it

View: eclipse_dev_global_commits

commit_id userid timestamp

1 pdobrev 12:00:31 12/1/2007

We'll also have to figure out how many comments are tagged as refactorings. We can do
something clever, or we can just use Ratzinger's 12 or so keywords, again using an SQL
query to make two views (SELECT commit_id FROM eclipse_dev_global_commits WHERE
...):

View: eclipse_dev_labeled_commits and eclipse_dev_unlabeled_commits

commit_id

1

We then calculate the proportion of unlabeled commits to those that are labeled, say the
proportion is 2:1. Then, we'll take a randomly select 20 (userid,timestamp) pairs from
eclipse_dev_labeled_commits (this number depends on the ratio, as well as what is a
reasonable total number to inspect), and take 20*(2:1) = 40 randomly selected from
eclipse_dev_unlabeled_commits. (Is there a way to do this in SQL? maybe, ask google) This
is known as a stratified sample.

Then, we do the hard work of actually doing the comparison. For a given timestamp t, this
involves checking out all projects associated with t at that timestamp, then the same
projects at t-1, then comparing the two together. This study could be nicely blinded, so
that the person doing the comparison doesn't know whether or not it was labeled as
"refactoring."

During the comparison, we will look for refactorings manually, noting roughly where each
refactoring originated (so that we can return to refactorings later, if needed):

Table: eclipse_dev_inspected

commit_id refactoring_name project file line_number notes

1 org.eclipse.rename.temp org.eclipse.core Workspace 123
This was a
little
refactoring!

1 org.eclipse.push.up org.eclipse.jdt.core BinaryMethod 56
Pushed up
to 2nd
superclass

2 swap.statements org.eclipse.core Workspace 658
Not
implemented
by any tool

Also, for each commit, we'll note whether a root canal refactoring took place (pure
refactoring). If it did, we record nothing, but if it didn't we record the actual line number of
some non-refactoring:

Table: eclipse_dev_nonrefactorings

commit_id project file semantics_change_line_number

2 org.eclipse.core Workspace 658

Hypothesis 5: Low-level Refactorings

Refactorings below the method level account for the majority of refactorings.

Create a new table:

Table: refactorings

refactoring_name level

org.eclipse.push.up high

swap.statements low

*we may later want to change level to a ranking, or a category, such as expression,
statement, method, class, package, etc.
** add an id, and refer to id in

Create an SQL query that counts the number of low and high level refactorings in
eclipse_dev_inspected. Report the proportion.

Hypothesis 1: Automated vs. Manual Refactoring
(quantity)

Many refactorings are performed manually, without a refactoring tool, even
when one is available.

If we wanted to be tricky, we would try to associate tool-refactorings with inspected-
refactorings, but this is probably too much work (however, it would be a good sanity
check). Instead, we'll just count the refactorings per commit with tools and in total:

ToolRefactoringsPerCommit = COUNT(eclipse_dev_tool_usage) /
COUNT(eclipse_dev_global_commits)

TotalRefactoringsPerCommit = COUNT(eclipse_dev_inspected) /
COUNT(SELECT UNIQUE commit_id FROM eclipse_dev_inspected)

ToolUsageRatio = ToolRefactoringsPerCommit / TotalRefactoringsPerCommit

Hypothesis 2: Automated vs. Manual Refactoring (types)

The variety of refactorings performed with tools do not reflect the variety
performed without tools.

Essentially, we do the same thing as in hypothesis 1, but we separate by tool type. The
SQL is more complicated, but the view ends up like this:

View: tool_types

refactoring_name is_automated count

org.eclipse.push.up true 33

org.eclipse.push.up false 430

swap.statements false 16

This can then be summarized as a bar chart.

Hypothesis 10: 'refactor' comment: more refactoring?

Commits labeled “refactor” do not indicate significantly more refactoring
instances than those without the label.

RefactoringsPerLabeledCommit = COUNT(SELECT * FROM
eclipse_dev_labeled_commits,eclipse_dev_inspected) /
COUNT(eclipse_dev_labeled_commits)

RefactoringsPerUnLabeledCommit = COUNT(SELECT * FROM
eclipse_dev_unlabeled_commits,eclipse_dev_inspected)/COUNT(eclipse_dev_unlabeled_commits)

For hypotheses 10-12, looking at a histogram instead of a scalar value is probably a more
honest representation of the data.

Hypothesis 11: 'refactor' comment: more root canal?

Commits labeled “refactor” indicate significantly fewer nonrefactoring changes
than those without the label.

LabeledNonRefactorings = SELECT * FROM eclipse_dev_labeled_commits ,
eclipse_dev_nonrefactorings

UnlabeledNonRefactorings = SELECT * FROM eclipse_dev_unlabeled_commits ,
eclipse_dev_nonrefactorings

RootCanalRefactoringsPerLabeledCommit =
(COUNT(eclipse_dev_inspected.commit_id) -

COUNT(LabeledNonRefactorings.commit_id)) / COUNT(eclipse_dev_labeled_commits)

RootCanalRefactoringsPerUnLabeledCommit =
(COUNT(eclipse_dev_inspected.commit_id) -

COUNT(LabeledNonRefactorings.commit_id)) / COUNT(eclipse_dev_unlabeled_commits)

FlossRefactoringsPerLabeledCommit =
COUNT(LabeledNonRefactorings) / COUNT(eclipse_dev_labeled_commits)

FlossRefactoringsPerUnLabeledCommit =
COUNT(UnlabledNonRefactorings) / COUNT(eclipse_dev_unlabeled_commits)

Hypothesis 12: 'refactor': more high level refactorings?

Commits labeled “refactor” contain proportionally more global and fewer local
refactorings than those without the label.

Note: I think here we meant that refactorings span multiple versions, but what's described
here doesn't test that.

HighLevelRefactoringsPerLabeledCommit = COUNT(SELECT * FROM refactorings ,

eclipse_dev_inspected, eclipse_dev_labeled_commits WHERE level='high') /
COUNT(eclipse_dev_labeled_commits)

HighLevelRefactoringsPerUnLabeledCommit = COUNT(SELECT * FROM refactorings ,
eclipse_dev_inspected, eclipse_dev_unlabeled_commits WHERE level='high') /
COUNT(eclipse_dev_unlabeled_commits)

Data Preparation 4

Observe programmers refactorings, either by looking over their shoulder or by video/screen
capturing their IDE. While doing so, we count the number of refactorings (in a systematic,
repeatable way) the programmers perform, dividing refactorings into tool-based vs.
automated, to create the following table:

Table: observed_refactorings

userid time refactoring_name used_tool

mr.ed 8/15/2008
10:00:01PST org.eclipse.extract.method no

We also need to capture when they commit and which modules:

Table: observed_commits

userid time module

mr.ed 8/15/2008 10:05:00PST org.company.product

Later, another researcher (for blindness) goes through the CVS commits (assumedly we
have access!), and figures out what refactorings occurred. Produce two tables in form of
eclipse_dev_inspected and eclipse_dev_nonrefactorings.

Open Questions:
• Do we have multiple observers?
• Do we do live or recorded?
• How many programmers do we observe?
• For how long?
• Emerson needs to update his Human-Subjects Review Committee documents. It

has a waiver of review. Can Danny and Chris be added to it, and will they be
'covered' under it?

Hypothesis 6: many refactorings get squished by CVS

Refactorings hidden by other changes account for a substantial proportion of
refactorings.

The results of the observed refactorings and refactorings in CVS are compared and
contrasted, looking for refactorings that were detected observationally and in CVS.

Hypothesis 7: direct observation yields few results

Direct programmer observation yields few refactoring results per researcher
hour.

We compare just the raw refactorings observed in refactorings observed vs refactorings in
CVS.

Cross Validation

This hypothesis can be tested using just Gail Murphy's data set. We know when people did
refactoring. Now we just need to aggregate time points into time periods (is there an SQL
query to do this?) and measure the length of those periods for each developer, and compare
that to refactorings performed in those periods to get a refactorings-per-hour measurement.

Hypothesis 8: programmers' refactoring recall

Programmers do not recall most manual refactorings, but do recall most
refactoring with tools, in retrospect.

After observing the programmers and recording when they refactor, we ask them in a
survey about what they recall about refactoring. Produce a another table, then compare
against directly observed refactorings.

A few open questions:
• How do we compute the baseline of refactorings?

◦ By live observation?
◦ By video observation?
◦ By looking through their CVS commits?

• Do we need to ask them live, or could we just call developers up at the end of a
work day and say "tell me about the refactoring that you did today"?

Hypothesis 14: refactoring is frequent

Refactoring is performed frequently.

This is essentially a characterization of every data set we can get our hands on. I think
refactorings out of CVS and observed refactorings are the most reliable sources for this
hypothesis, though.

Hypothesis 15: Refactoring-to-Edit Ratio

Refactorings account for a high proportion of total program changes.

In the Murphy data set, we've got records of edits and tool-based refactorings. However,
it's not clear what an "edit" means, exactly. The recorded edit event is probably too fine
grained.

A more promising approach would be to go back through the CVS comparisons, and look at
every character in the diffs. If the character can be directly accounted for by a refactoring,
then we put that character into the "refactoring bucket," and the "edit bucket" otherwise.
Then, it's just a matter of counting how many items are in the buckets.

	Data Preparation 1
	Hypothesis 13: eclipse devs different from other devs
	Cross Validation

	Hypothesis 4: Tool Configuration
	Hypothesis 9: Refactoring Grouping
	 Cross-validation

	Data Preparation 2
	Hypothesis 3: decreased refactoring before code release
	 Cross-validation

	Data Preparation 3
	Hypothesis 5: Low-level Refactorings
	Hypothesis 1: Automated vs. Manual Refactoring (quantity)
	Hypothesis 2: Automated vs. Manual Refactoring (types)
	Hypothesis 10: 'refactor' comment: more refactoring?
	Hypothesis 11: 'refactor' comment: more root canal?
	Hypothesis 12: 'refactor': more high level refactorings?
	Data Preparation 4
	Hypothesis 6: many refactorings get squished by CVS
	Hypothesis 7: direct observation yields few results
	Cross Validation

	Hypothesis 8: programmers' refactoring recall
	Hypothesis 14: refactoring is frequent
	Hypothesis 15: Refactoring-to-Edit Ratio

