
 - 1 - 

Improving Refactoring with Alternate Program Views 

Emerson Murphy-Hill 

Portland State University, Department of Computer Science 

P.O. Box 751, Portland, OR 97207-0751 
emerson@cs.pdx.edu 

Abstract.  Refactoring is the process of changing the structure of code without 

changing its behavior.  Refactoring can be semi-automated with the help of 

tools, but many existing tools do a poor job of communicating errors trig-

gered by the programmer.  This poor communication causes programmers to 

refactor slowly, conservatively, and incorrectly.  In this paper, I demonstrate 

the problems with current refactoring tools, characterize three new alternative 

program views to assist in refactoring, and describe a user study that com-

pares these new views against existing tools.  The results of the study show 

that both the speed and accuracy of refactoring can be increased using these 

new views.  The new views exhibit several desirable properties for future 

refactoring tools. 

1   Introduction 

This paper describes how tools support programmers in a broad swath of day-to-day 

programming activities called refactoring.  In this section, I will define what refactor-

ing is, describe why it is important, and detail an essential refactoring called Extract 

Method.  I will depict how tools are meant to assist in refactoring and describe an 

exercise that demonstrates the deficiencies of current tools. 

1.1   Refactoring 

Refactoring is simply defined as the process of changing the structure of code without 

changing the way a program behaves [1].  Many activities fall under the heading of 

refactoring: changing variable names, moving class members up and down a class 

hierarchy, changing visibility, generalizing and specializing types, substituting one 

algorithm for another, and removing dead code, to name a few. 

Refactoring is important for several reasons: 

 

• Refactoring makes understanding programs easier.  Well-chosen names and 

meaningful module boundaries make code more digestible for the program-

mer.  For instance, a variable named “hasHelmet” is likely to be more under-

standable than a variable named “b.”  Programmers rarely get names right the 

first time, and refactoring allows names to be changed as the program evolves. 



 - 2 - 

• Refactoring makes adding new features easier.  Adding new functionality 

may be difficult, depending on how a program is structured.  For instance, 

printing to the console every time a variable is set is difficult when the vari-

able is set in many places.  If the program is refactored so that all sets to that 

variable go through a single setter method, then printing to the console would 

only require the addition of one line. 

• Refactoring keeps development agile.  Software customers are famous for 

changing requirements, so software developers must adapt.  Programmers 

cannot predict what will change, nor should they have to.  Refactoring allows 

programs to be changed throughout the development cycle.  

 

But the power of refactoring does not come for free.  Performing refactoring is not 

trivial, even for seemingly simple refactorings such as changing variable names.  After 

changing a variable name, you must be sure to change every reference to the new 

name, but not when the name appears in string literals, in the middle of other variable 

names, or in comments (unless the comment directly refers to the variable, except 

when in casual use), and not when the name is shadowed by a variable of the same 

name in a subclass, or by a local variable of the same name.  Even apparently simple 

refactoring operations have many rules, or preconditions, that must be satisfied. 

For several refactorings, Opdyke showed that program behavior is preserved when 

certain preconditions are satisfied [2].  Later, Roberts and colleagues developed the 

first tool that automatically checks preconditions before refactoring [3].  Today, refac-

toring tools are implemented in most mainstream integrated development environ-

ments for object-oriented languages, including Smalltalk, C++, Java, Python, and 

Visual Basic.  Refactoring tools have also been built for other, non-object-oriented 

languages, such as Haskell [4] and Prolog [5]. 

1.2 Extract Method Refactoring 

One refactoring that has enjoyed widespread tool support is called Extract Method [1].  

A tool that performs the Extract Method refactoring essentially takes a sequence of 

statements, copies them into a new method, and then replaces the original statements 

with a call to the new method.  This refactoring is useful when duplicated code should 

be factored out (Figure 1) and when a method contains code segments that are concep-

tually separate. 

In his influential book on refactoring, Fowler reports that Extract Method is one of 

the most common refactorings he performs [1].  Later, in the article “Crossing Refac-

toring’s Rubicon,” Fowler says Extract Method is “a key refactoring.  If you can do 

Extract Method, it probably means you can go on [to] more refactorings” [6]. 



 - 3 - 

void hopOverLog(){ 

 placePedalsAt(HORIZONTAL); 
 rotatePedals(100);//pedal hard! 
 liftHandlebars(); 
 rotatePedals(0);//stop pedaling 
 liftRearWheel(); 
} 
 

void showOff(){ 

 placePedalsAt(HORIZONTAL); 
 rotatePedals(100);//pedal hard! 
 liftHandlebars(); 
 rotatePedals(50);//ease up a bit 
 changeExpression(Faces.GRIN); 
} 

void hopOverLog(){ 

 popWheelie(); 
 rotatePedals(0);//stop pedaling 
 liftRearWheel(); 
} 
 

void showOff(){ 
 popWheelie(); 
 rotatePedals(50);//ease up a bit 
 changeExpression(Faces.GRIN); 
} 
 

void popWheelie() { 
 placePedalsAt(HORIZONTAL); 
 rotatePedals(100);//pedal hard! 
 liftHandlebars(); 
} 

Figure 1.  An application of the Extract Method refactoring to remove duplicated code in a Bicyclist 

class.  On the left, the original code, on the right, the refactored code. 

boolean canRideToday(){ 
 boolean tiresOk = tires.areFlat(); 
 boolean spouseOk = !spouse.isUpset(); 
 return tiresOk && spouseOk; 
} 

Figure 2.  A code selection (in grey) that a tool cannot extract into a new method.  Most tools that 

perform this refactoring will display an error message similar to the one shown above. 

While Extract Method tools are important, the human interface to such tools re-

mains stagnant.  The original Refactoring Browser for Smalltalk assists the user in 

performing Extract Method by prompting the user for a new name for the method.  

The browser then presents the user with a generic textual error message if there is a 

problem [3].  Figure 2 displays an example of such an error message in the Eclipse 

environment [7].  My review of 16 tools that perform the Extract Method refactoring 

shows very little variation on this user interface.  In this paper, I demonstrate that this 

user interface can be significantly improved. 



 - 4 - 

1.3 An Exercise in Refactoring 

From personal experience, I found that existing tools’ presentations of error messages 

are typically non-specific and unhelpful in diagnosing problems.  However, I was 

unsure how often these problems arise in practice and whether other programmers also 

find the error messages unhelpful. 

As an exercise, I observed 11 programmers perform a number of Extract Method 

refactorings.  Six of the programmers were Ph.D. students and two were professors 

from Portland State University, while three were commercial software developers.  I 

asked the programmers to perform Extract Method refactorings wherever they thought 

it was appropriate, using the Eclipse Extract Method Wizard.  Each session with a 

programmer lasted around 30 minutes, and programmers successfully extracted be-

tween 2 and 16 methods.   

  I asked the participants to refactor several code bases:  

• Azureus, a peer-to-peer file-sharing client [8]; 

• GanttProject, a project scheduling application [9]; 

• JasperReports, a report generation library [10]; 

• Jython, a Java implementation of the Python programming language [11]; 

• the Java 1.4.2 libraries [12]. 

Each code base is large, active, and mature.  Each code base uses different coding 

conventions and varies in the degree to which those conventions are adhered to.  I 

gave programmers a tool to find unusually large methods, an indicator that Extract 

Method might be useful. 

The exercise led to some interesting observations about how often programmers 

can perform Extract Method successfully: 

 

• In all, 9 out of 11 programmers experienced at least one error message 

while trying to extract code.  The two exceptions performed some of the 

fewest extractions in the group, so were among the least likely to encoun-

ter errors.  Furthermore, these two exceptions were some of the most ex-

perienced programmers in the group, and seemed to avoid code that might 

possibly generate error messages. 

• Some programmers experienced many more error messages than others. 

One programmer attempted to extract 34 methods, and encountered errors 

during 23 of these attempts. 

 

These observations suggest that (1) programmers fairly frequently attempt to apply 

Extract Method to code that is not immediately extractable, and (2) some experienced 

programmers have developed coping strategies to avoid code that cannot easily be 

extracted. 

The errors that programmers encountered while trying to apply Extract Method 

arose from violations of preconditions.  Opdyke defined several preconditions to the       

_ 



 - 5 - 

0. The selection must be a list of statements. 

1. Within the selection, there must be no assignments to variables that might be used later 

in the flow of execution.  For Java, this can be relaxed to allow assignment to one vari-

able, the value of which can be returned from the new method. 

2. Within the selection, there must be no conditional returns.  In other words, the code in 

the selection must either always return, or always flow beginning to end. 

3. Within the selection, there must be no branches to code outside of the selection.  For 

Java, this means no break or continue statements, unless the selection also contains 

their corresponding targets. 

4. Outside of the selection, there must be no branches to code inside of the selection.  Java 

has no such language feature, but GOTO would be an example from other languages. 

5. The code must compile before it is refactored. 

 

Figure 3.  Preconditions to the Extract Method refactoring, based on Opdyke’s preconditions [2].  I 

have omitted preconditions regarding the naming, visibility, and inheritance relationships of the new, 

extracted method. 

Extract Method refactoring [2], summarized in Figure 3.  During the exercise, I ob-

served the following about the error messages that the tools presented: 

 

• Error messages regarding the syntactic selection occurred about as fre-

quently as any other type of error message (violating precondition 0, Fig-

ure 3).  In other words, programmers frequently had problems selecting a 

desired piece of code.  This was usually due to unusual formatting in the 

source code or the programmer trying to select statements that flowed 

down multiple screens. 

• The tool reported only the first violation that it found.  With varying de-

grees of success, programmers scanned the source code to find other vio-

lations of preconditions. 

• Programmers never selected break or continue statements without their 

corresponding targets.  Generally, programmers were quite conservative 

about this type of irregular control flow, and thus avoided refactoring code 

with break or continue statements. 

• The error messages often discouraged the programmer from refactoring at 

all.  For instance, if the tool said that a method could not be extracted be-

cause there were multiple assignments to local variables, the next time a 

programmer came across any assignments to local variables, the pro-

grammer didn’t try the extraction at all. 

• The errors were sometimes misinterpreted.  The error messages were all 

presented as text boxes and sometimes with similar wording.  At times, 

programmers interpreted one error message as an unrelated error message. 

• The errors were sometimes insufficiently descriptive.  Especially among 

programmers who previously had not used refactoring tools, a new error 

message may not be understandable.  When asked to explain what an error 

message was saying and where the problem was located, several pro-

grammers gave explanations unrelated to the problem. 



 - 6 - 

 

This exercise revealed that there are two types of improvements to Extract Method 

tools.  First, programmers need support in making a valid selection before the Extract 

Method refactoring can take place.  Second, programmers need more expressive, 

distinguishable, and understandable messages that convey the meaning of precondition 

violations. 

2   New Views for Extract Method  

In the following section, I describe three tools1 that I have built for the Eclipse envi-

ronment that address the problems demonstrated in the exercise.  Although built for 

the Java programming language, the techniques embodied in these tools apply to other 

object-oriented and imperative programming languages.   

I have built Selection Assist and Box View to improve on the standard mouse 

and keyboard for selecting code.  I have also built Refactoring Annotations to improve 

on the standard dialog-based Extract Method tools. 

2.1 Selection Assist 

The Selection Assist tool helps programmers in selecting whole statements by provid-

ing a visual cue of the textual extent of a program statement.  The programmer begins 

by placing the cursor in the white space in front of a statement.  A green highlight is 

then displayed on top of the text, from the beginning to the end of a statement (Figure 

4).  Using the green highlight as a guide, a programmer can then select the statement 

normally with the mouse or keyboard. 

This tool is similar to those found in other development environments.  Dr. 

Scheme, for example, highlights the area between two parentheses in a similar manner 

[13].  EMACS and other text editors have similar mechanisms for bracket matching 

[14].  However, brackets do not surround most program statements, so these tools are 

not very useful for selecting statements.  Some environments, such as Eclipse, have 

special keyboard commands to select statements, but during this project, nearly every 

programmer under observation seemed to prefer the mouse.  The Selection Assist 

allows the programmer to use either the mouse or the keyboard for selection tasks. 

                                                           
1 The tools and a short movie are  available at:  http://www.multiview.cs.pdx.edu/refactoring 

Figure 4.  The Selection Assist tool in the Eclipse environment, shown covering the entire 

if statement, in green.  The user’s mouse selection is partially overlaid, slightly darker. 



 - 7 - 

2.2 Box View 

Another tool that assists with selection is Box View, which displays a simplified ab-

stract syntax tree as a series of nested boxes.  Box View is a window shown adjacent 

to program text that displays a uniform representation of the code (Figure 5).  At the 

top level, Box View represents a class as a box with labeled methods inside of it.  

Inside of each method are a number of nested boxes, each representing a nested state-

ment.  When the programmer selects a part of a statement in the editor, the corre-

sponding box shows up in orange.  When the programmer selects a whole statement in 

the editor, the corresponding box shows up in green.  When the programmer selects a 

box, Box View selects the corresponding program statement in the program code. 

Box View was inspired by a similar tool in Adobe GoLive [15] that displays an 

outline of an HTML table.  Like Selection Assist, programmers can operate Box View 

using the mouse or keyboard.  Using the mouse, the programmer can click on boxes to 

select code, or select code and glance at the boxes to check that the selection includes 

only full statements (contiguous green).  Using the keyboard, the programmer can 

select sibling, parent and child statements. 

2.3 Refactoring Annotations 

Refactoring Annotations convey the consequences of an Extract Method refactoring.  

Annotations overlay program text to express information about a specific Extract 

Method refactoring (Figure 6).  Each variable is assigned a distinct color, and each 

occurrence is highlighted.  Across the top of the selection, an arrow points to the first 

use of a variable that will have to be passed as a parameter into the extracted method.  

Across the bottom, an arrow points from the last assignment of a variable that will 

have to be returned.  L-values have black boxes around them, while r-values do not.  

An arrow to the left of the selection simply indicates that control flows from beginning 

to end.  

Figure 5.  Box View tool in the Eclipse environment, to the left of the program code. 



 - 8 - 

These annotations are intended to be most useful when preconditions are not met 

(Figure 7)2.  When the selection contains assignments to more than one variable, ar-

rows are drawn from the bottom as multiple return values (Figure 7a).  When a selec-

tion contains a conditional return, an arrow is drawn from the return statement to the 

left, crossing the beginning-to-end arrow (Figure 7b).  When the selection contains a 

branch statement, a line is drawn from the branch statement to its corresponding target 

(Figure 7c).  If any of these preconditions are not met, Xs are displayed, indicating the 

location of the offending code.   

When code does not meet a precondition, Refactoring Annotations are intended to 

give the programmer an idea of how to correct the violation.  Although refactoring 

while violating a precondition may change program behavior, often the programmer 

can change the selection to allow the extraction of a method.  One solution is to re-

duce or enlarge the selection.  Other solutions include changing program logic to 

eliminate break and continue statements, another kind of refactoring. 

The Refactoring Annotations are intended to assist the programmer in finding these 

solutions in two ways.  Firstly, because Refactoring Annotations can indicate multiple 

precondition violations simultaneously, the annotations give the programmer an idea 

of the severity of the problem.  Correcting for a conditional return alone will be easier 

than correcting for a conditional return, and a branch, and multiple assignments.  

Likewise, correcting two assignments may be easier than correcting six assignments.  

Secondly, Refactoring Annotations give specific, spatial cues to problem points.  For 

instance, when a branch is selected without its target, boxes are drawn around, and 

lines are drawn between, both the branch and the target. 

                                                           
2 Refactoring Annotations currently only handle preconditions 1-3.  Precondition 4 is irrele-

vant, as this tool currently works only with Java.  Precondition 5 is already handled by the 

Eclipse environment, which underlines compilation errors. 

Figure 6.  Refactoring Annotations overlaid on program code.  The programmer has 

selected two lines (in grey) to extract.  Here, Refactoring Annotations show variable 

use: front and rear will be parameters, truedWheels will be returned. 



 - 9 - 

b. 

Figure 7.  Refactoring Annotations display an instance of a violation of refactoring 

precondition 1 (a), precondition 2 (b), and precondition 3 (c), described in Figure 3. 

a. 

c. 

The control flow annotations appear quite similar to Control Structure Diagrams 

[16].  Unlike Control Structure Diagrams, Refactoring Annotations depend on the 

programmer’s selection, and include less noise.  Variable highlighting is much like the 

highlighting tool in Eclipse, where the programmer can select an occurrence of a vari-

able, and every other occurrence is highlighted.  Unlike Eclipse’s variable highlighter, 

Refactoring Annotations distinguish between variables using different colors.  Fur-

thermore, variables are highlighted automatically, depending on whether they are used 

both inside and outside of the selection.  In Refactoring Annotations, the arrows drawn 

as parameters and return values are similar to the arrows drawn in the Dr. Scheme 



 - 10 - 

environment [13].  In Dr. Scheme, arrows are drawn between a variable declaration 

and each variable reference.  Unlike the arrows in Dr. Scheme, Refactoring Annota-

tions draw only one arrow per parameter and per return value, when needed.  As a 

whole, Refactoring Annotations are simply a collection of existing program annotation 

techniques, tailored specifically for the Extract Method refactoring. 

3 User Study 

Having demonstrated that there are usability problems with Extract Method tools and 

having proposed new tools as solutions, I will now present an experiment that has 

helped to determine whether the new tools overcome these usability problems.  The 

experiment has two parts.  In the first part, programmers use the standard mouse and 

keyboard, Selection Assist, and Box View to select program statements.  In the second 

part, programmers use the standard Eclipse Extract Method Wizard and Refactoring 

Annotations to identify problems in a selection that violate Extract Method precondi-

tions.  In both parts, I evaluate answers for speed and correctness. 

3.1 Human Subjects 

I drew subjects from Professor Andrew Black’s object-oriented programming class.  

Professor Black gave every student the option of either participating in the experiment 

or reading and summarizing two papers about refactoring.  In all, 16 out of 18 students 

elected to participate.  All subjects were at least moderately familiar with Java, C, or 

C++.  Most students had around 5 years of programming experience and three had 

about 20 years.  Fifteen students were computer science majors; one was an electrical 

engineering major.  Six students were college seniors, eight were Masters students, 

one was working towards a Ph.D., and two were not degree seeking.  At the time of 

the experiment, half of the students held jobs that related to computer science. 

About half the students typically used integrated development environments such as 

Eclipse, while the other half typically used editors such as vi [17].  While all students 

were at least somewhat familiar with the practice of refactoring, only two used auto-

mated tools.  These users estimated using tools to perform refactoring 20% and 60% 

of the time. 

No subjects had previously used Selection Assist, Box View, or Refactoring Anno-

tations, as they were not available prior to the study. 

3.2 Experiment Design 

The experiments were performed over the period of a week, and lasted between ½ and 

1½ hours per subject.  The subjects first filled out a brief questionnaire regarding their 

background.  They were then trained and allowed to practice using each selection tool.  

The subjects then began the actual test by selecting a variety of if statements with each 



 - 11 - 

selection tool.  They were then trained and allowed to practice with the Extract 

Method tools.  The subjects then attempted to extract several methods with each tool.  

Finally, they filled out a post-study questionnaire regarding their subjective impres-

sions of the tools. 

I first compared three selection tools: mouse and keyboard, Selection Assist, and 

Box View.  I varied the order of selection tools across subjects to minimize the effect 

of cross training between tools.  Then I compared the two Extract Method tools in 

fixed order: first, the Eclipse Extract Method Wizard, then Refactoring Annotations.  I 

did not vary order for these tools because Extract Method could only be explained to 

subjects with a tool that performs the refactoring; Refactoring Annotations do not 

actually transform code. 

I selected all code for this experiment from the open source projects described in 

Section 1.3. 

3.2.1 Training 

For each selection tool, I explained the tool and demonstrated it on an example class, 

and then allowed the subject to practice with the tool to his satisfaction.  The same 

procedure was followed for each Extract Method tool, except that I spent more time 

explaining how each tool worked because the tools were more complex.  Training and 

practice time for each selection tool was generally less than 5 minutes.  Training and 

practice time for each Extract Method tool was generally 5 to 10 minutes. 

3.2.2 Selection Tasks 

In the first half of the experiment, subjects were asked to select if statements, includ-

ing the then, else and else if clauses that might go along with them.  I chose this task 

because if statements can be difficult to select for the reasons I observed in the pilot 

study: they can be long, have inconsistent formatting, and have optional curly brack-

ets.  I also chose if statements because they occur frequently, occur in the same syntax 

in many languages, and are easy for programmers to identify. 

By hand, I chose nine methods containing if statements, with varying length and 

anticipated selection difficulty.  I added a three-line if statement to the beginning of 

each method to indicate the beginning of each test.  Otherwise, the original code re-

mained unmodified. 

I asked subjects to select each if statement, then press the ESC key to “mark” the 

selection.  The programming environment measured the time to select a statement as 

the elapsed time between consecutive presses of ESC.  I told subjects that I was meas-

uring accuracy first, then speed, although subjects were given as much time as needed 

to complete the task.  All subjects used each of the three tools. 



 - 12 - 

3.2.3 Extract Method Tasks 

In the second half of the experiment, I gave subjects a pre-selected piece of code and 

told them to try to perform the Extract Method refactoring.  The subjects first used the 

Eclipse Wizard for four methods, and then used the Refactoring Annotations for the 

next four methods.  I told participants that every piece of code they would try to ex-

tract would violate one or more preconditions.  Their task was to mark the pieces of 

code that were causing the precondition violation or violations.  If the violation was a 

return inside the conditional, I told the subjects to mark every return keyword.  If the 

violation was a branch, I told the subjects to mark every offending break or continue 

keyword.  If the violation was assignments to multiple local variables, I told the sub-

jects to mark all assignments to the variables that would have to be returned in the 

extracted method.  Subjects were measured for accuracy and speed, and were given as 

much time as they needed to complete the task. 

4 Results of the Study 

Here I present the results of the study, including measurements of the accuracy in 

completing the tasks, the time taken to complete a task, and subjects’ perceptions of 

the tools. 

4.1 Measured Results 

Table 1 shows the combined number of if statements that subjects selected correctly 

and incorrectly for each tool.  Table 1 also shows the mean time in seconds to select 

an if statement across all participants, and the time normalized as a percentage of the 

selection time for the mouse and keyboard. 

Table 1.  Combined number of correctly selected and mis-selected if statements and mean correct selec-

tion time, with time normalized to mouse/keyboard selection time, over all subjects for each tool.   

 Combined 

Mis-Selected If 

Statements 

Combined 

Correctly 

Selected If 

Statements 

 Mean selection 

time (seconds) 

Selection time as 

Percentage of 

Mouse/Keyboard 

Selection Time 

Mouse/Keyboard 37 303  10.4 100% 

Selection Assist 6 355  5.5 54% 

Box View 2 357  7.8 71% 

 



 - 13 - 

     From Table 1, we can see that there were far more mis-selections using the mouse 

and keyboard than using Selection Assist, and that Box View had the fewest mis-

selections.  Table 1 also indicates that Selection Assist improved selection speed by 

46%, and that Box View improved selection speed by 29%. 

The top of Figure 8 shows individual subjects’ mean times for selecting if state-

ments using the mouse and keyboard against Selection Assist.  Here we can see that 

all subjects but one were faster using the Selection Assist than using the mouse and 

keyboard (subjects below the dotted line).  We can also see that all subjects but one 

were more error prone using the mouse and keyboard than with Selection Assist.  

Furthermore, subjects’ mean speed varied widely using the mouse and keyboard 

(standard deviation of 3.02 seconds), but was more consistent using Selection Assist 

(standard deviation of 0.99 seconds).  

The bottom of Figure 8 compares the mouse and keyboard against Box View.  

Here we see that 11 of the 16 subjects are faster using Box View than using the mouse 

and keyboard.  We can also see that all subjects except one are less error prone with 

Box View.  Subjects’ mean speed varied only slightly less with Box View versus the 

mouse and keyboard (a standard deviation of 2.85 versus 3.02 seconds). 

Table 2 displays what kinds of problems subjects encountered during the Extract 

Method task.  “Missed Violation” means that a subject failed to recognize that one or 

more preconditions were being violated.  “Irrelevant Code” means that a subject 

marked some piece of code that was irrelavent to the violated precondition, such as 

marking a break statement when the problem was a conditional return.  “Missed 

Break/Continue” means that a subject failed to mark a break or continue statement 

that was violating a precondition.  “Missed Variable” means that a subject failed to 

mark any occurrence of a variable that is assigned to within the code to be extracted.  

The parenthesized number next to “Missed Variable” is the number of times a subject 

correctly marked at least one assignment to such a variable, but failed to mark every 

assignment.  All subjects found every conditional return, so this precondition violation 

is omitted from the table. 

Table 2 tells us that programmers made fewer mistakes with Refactoring Annota-

tions than with the Eclipse Wizard.  Using Refactoring Annotations, subjects were 

much more likely to recognize all precondition violations and identify every assigned 

variable in the selection.  Subjects were also much less likely to misidentify the pre-

condition violations.  Neither tool was more helpful in helping the subjects find break 

and continue statements.  Subjects correctly identified variables that would need to be 

returned more often with Refactoring Annotations than with the Eclipse Wizard. 

Table 2.  At left, number and type of mistakes when finding problems during the Extract Method refactor-

ing over all subjects, for each tool.  At right, the mean and median time to correctly identify all violated 

preconditions, in seconds.    Smaller numbers indicate better performance. 

 Missed 

Violation 

Irrelevant 

Code 

Missed Break/ 

Continue 

Missed  

Variable 

 Mean  

Identification 

Time (seconds) 

Median 

Identification 

Time (seconds) 

Eclipse 

Wizard 

11 28 2 12 (0)  164 127 

Refactoring 

Annotations 

1 6 2 2 (10)  46 40 

 



 - 14 - 

Figure 8.  Mean time in seconds to select if blocks using the mouse and keyboard vs. 

Selection Assist (top) and Box View (bottom).  Each subject is represented as a whole or 

partial X. The distance between the bottom legs represents the number of mis-selections 

using the mouse and keyboard. The distance between the top arms represents the number 

of mis-selections using Selection Assist (top) or Box View (bottom).  Points without arms 

or legs represent subjects who did not make mistakes with either tool. 



 - 15 - 

 

Figure 9 shows the mean time to identify all precondition violations correctly for 

each tool and each user.  Note that I omitted two participants from the plot, because 

they did not correctly identify precondition violations for any code using the Eclipse 

Wizard.  Again, note that the dotted line represents equal mean speed using either 

tool.  In Figure 9, we notice that all users are faster with Refactoring Annotations.  We 

also notice that all users except one were at least as accurate using Refactoring Anno-

tations. 

In all, 45 out of 64 uses of Refactoring Annotations helped the subjects to mark 

every precondition violation.  Only 26 out of 64 uses of the Eclipse Wizard allowed 

the subjects to identify every precondition violation. 

In terms of speed, Table 2 also shows the mean and median time to find all pre-

condition violations correctly, across all participants.  On average, subjects recognized 

precondition violations more than three times faster using Refactoring Annotations 

than using the Eclipse Wizard. 

Overall, compared against traditional tools, subjects performed better in terms of 

speed and accuracy for all three views that I have created: Selection Assist, Box View, 

and Refactoring Annotations. 

4.2 Questionnaire Results 

The post-test questionnaire allowed the subjects to express their preferences for the 

five tools they tried.  For each tool, the subject indicated the tool’s helpfulness for the 

assigned task, indicated likeliness to use the tool in the future if it was available for 

their preferred environment, and optionally wrote free form comments and sugges-

tions.  The complete numeric results of the questionnaire appear in the Appendix. 

Most users did not find the keyboard or mouse alone helpful in selecting if state-

ments, and generally rated the mouse and keyboard lower than either Box View or 

Selection Assist. 

Figure 9.  Mean time to identify precondition violations correctly using the Eclipse Wizard versus 

Refactoring Annotations.  Each subject is represented as an X, where the size of the bottom half repre-

sents the number of imperfect identifications using the Eclipse Wizard and the size of the top half 

represents the number of imperfect identifications using Refactoring Annotations.  



 - 16 - 

All users were either neutral or positive about the helpfulness of Box View, but 

were divided about whether they were likely to use it again.  Some subjects reported it 

was “easy to use,” “fast for highlighting the whole block,” and the “best tool.”  One 

subject explained his positive review by saying he had the “opportunity to view code 

blocks without being bothered by code specifics.”  Other subjects, however, reported 

it was “too complicated to digest” and “counterintuitive.” 

Selection Assist scored the highest of the selection tools, with 15 of 16 users re-

porting it was helpful and they were likely to use it again.  Subjects reported the tool is 

“easy to operate,” “intuitive,” and “simple, unobtrusive, [and] easy to understand.”  

The only widespread disappointment was that “we still have to do the highlighting by 

ourselves.” 

Subjects were unanimously positive on the helpfulness of Refactoring Annotations, 

and almost all of them preferred Refactoring Annotations to the standard Eclipse Ex-

tract Method Wizard.  Users reported that Refactoring Annotations were “easy to use 

and very intuitive,” “extremely helpful for large blocks of code,” and “a sweet addi-

tion to any IDE.”  Some users reported difficulty in distinguishing between colors and 

one user reported Refactoring Annotations seemed “rather complex” on first impres-

sion.  Concerning the standard Eclipse Extract Method Wizard, subjects reported that 

they “still have to find out what the problem is” and are “confused about the error 

message[s].”  In reference to the error message the Eclipse tool produced, one subject 

quipped, “who reads alert boxes?” 

Overall, the subjects’ responses showed that they found the Selection Assist, Box 

View, and Refactoring Annotations superior to their traditional counterparts for the 

tasks given to them.  More importantly, the responses also showed that the subjects 

felt the new tools would be helpful outside of the context of the experiment. 

4.3 Shortfalls of the Experiment 

While the results of this study indicate that the new refactoring tools are beneficial to 

performing Extract Method, the study has several shortfalls:  

  

• The code used in both the selection and Extract Method workloads may not be 

representative of a typical refactoring situation.  Although the code comes 

from real projects, I selected code by hand to stress different aspects of the 

tools. 

• Subjects learned how to use each tool in an extremely short amount of time.  

Given more practice, I expect better programmer performance with every tool. 

• Some procedural irregularities occurred during the study.  During the selection 

test, while every participant tried each tool on each code set, a flaw in the 

study design caused distribution of tools to code sets to be uneven.  In the 

most extreme case, one code set was traversed only twice with the mouse and 

keyboard while another code set was traversed eight times using the Selection 

Assist.  Furthermore, during the selection test, two subjects were given only 

partial code sets, so they tried two tools for significantly shorter durations than 

the third tool.  These study irregularities were confined to the selection tasks. 



 - 17 - 

• Since the order of the tools during the Extract Method test was fixed, I would 

automatically expect somewhat better performance from Refactoring Annota-

tions because the subjects’ experience with Extract Method increased as the 

experiment went on. 

• Box View displayed two bugs during the study.  Participants either briefly had 

to revert to using the mouse, or did not notice the mistakes caused by Box 

View.  I have omitted selection mistakes related to bugs with Box View from 

these results. 

 

Overall, I believe that despite the shortcomings and irregularities of this study, the 

results are nevertheless useful in comparing the tools against one another. 

5 Discussion 

5.1 Interpretation of Results 

During this study, I have observed that new, alternative view tools can improve pro-

grammer accuracy and speed in refactoring.   

Programmers can use both Box View and Selection Assist to improve code selec-

tion.  Box View appears to be preferable when the probability of mis-selection is high, 

such as when statements span several lines or are formatted irregularly.  Selection 

Assist appears to be preferable when a more lightweight mechanism is required and 

statements are less than a few lines long.  An effective statement selection tool is criti-

cal to a successful Extract Method refactoring. 

Refactoring Annotations are preferable to a wizard-based approach to show pre-

condition violations during the Extract Method refactoring.  The results of this study 

indicate that Refactoring Annotations effectively communicate the location and sever-

ity of precondition violations.  When a programmer has a better understanding of 

refactoring problems, I believe the programmer is likely to be able to correct the prob-

lems and successfully perform the refactoring. 

5.2 Recommendations 

Creating and studying views for Extract Method revealed a number of desirable prop-

erties for tools that assist with refactoring in general.  Tools that assist in the selection 

of code should: 

 

• Be lightweight.  Users can normally select code quickly and efficiently, and 

any tool to assist selection should not add overhead to slow down the common 

case. 

• Help the programmer overcome unfamiliar or unusual code formatting. 

• Allow the programmer to select code in a manner specific to the task they are 

performing.  While bracket matching can be helpful, bracketed statements are 



 - 18 - 

not the only meaningful program constructs a programmer would want to se-

lect. 

 

Tools that assist in displaying violations of refactoring preconditions should: 

 

• Be lightweight.  The full, round-trip time to complete a tool-assisted refactor-

ing should not take longer than a manual refactoring. 

• Indicate the location(s) of the violations.  A tool should tell the programmer 

what the compiler already knows, rather than needing “to basically compile 

the whole snippet in my head,” as one Eclipse bug reporter mentioned [18]. 

• Show every violated precondition.  This helps the programmer in accessing 

the severity of the violations. 

• Help programmers distinguish precondition violations (showstoppers) from 

warnings and advisories.  Programmers should not have to wonder whether 

there is a problem with the refactoring. 

• Give some indication of the amount of work required to fix the problem.  The 

programmer should be able to tell whether a violation means the code can be 

refactored with a few minor changes, or the code is nearly hopeless. 

• Display the violation relationally, when appropriate.  Violations often are not 

caused at a single character position, but arise from a number of related pieces 

of source code.  Relations can be represented using arrows and colors, for ex-

ample. 

• Use different, distinguishable representations for different types of violations.  

Programmers should not confuse one error message for another and waste 

time tracking down and trying to fix a violation that does not exist. 

6 Related Work 

Many tools provide support for the Extract Method refactoring, but few deviate from 

the wizard-and-error-message interface described in this paper.  However, some tools 

silently resolve some precondition violations.  For instance, when you try to extract an 

invalid selection in Code Guide, the environment expands the selection to a valid list 

of statements [19].  You may then end up extracting more than you intended.  With 

Xrefactory, if you try to use Extract Method on code that would return more than one 

value, the tool generates a new tuple class [20].  Again, this may or may not be what 

you intended, and is not the only solution to the problem. 

StarDiagram for Eclipse performs refactoring using a non-text-based representation 

[21].  O’Connor and colleagues implement Extract Method using a graph notation to 

help the programmer recognize and eliminate code duplication, but they do not spec-

ify what happens when a precondition is violated.  This approach avoids selection 

mistakes by presenting program structure as an abstract syntax tree, where nodes are 

the only valid selections. 

A variety of authors have suggested using UML diagrams to refactor programs 

[22,23,24,25], mainly by manipulating class diagrams.  However, as Don Roberts 

notes, “most refactorings have to manipulate portions of the system that are below the 



 - 19 - 

method level” [26], so representing refactoring preconditions using class diagrams 

appears difficult.  In one sense, UML is a poor representation for performing refactor-

ings because a refactoring must alter syntax, yet UML always abstracts away syntax. 

Previous research has suggested some desiderata for refactoring tools.  Roberts’ 

thesis describes his experience building and using the Refactoring Browser, the origi-

nal refactoring tool and the first to implement Extract Method [26].  Roberts notes that 

the original tool was so unpopular that the designers did not even use it themselves.  

Upon reflection, Roberts illustrated three characteristics that every good refactoring 

tool should have: speed, undo support, and tight IDE integration.  Most refactoring 

tools seem to have taken this message to heart. 

7 Conclusions 

Refactoring is an important part of software development and refactoring tools are 

critical to making refactoring fast and behavior preserving.  However, when a refac-

toring is not immediately possible, most modern refactoring tools do a poor job of 

communicating problems with the programmer.  Programmers are unlikely to cor-

rectly identify the root problems when a refactoring goes wrong, and are therefore 

unlikely to successfully correct problems.  Programmers may waste time trying to 

correct problems that do not exist, or worse, manually alter code and inadvertently 

change behavior in the process.  Moreover, the experience of a failed refactoring may 

cause a programmer to avoid refactoring code in the future.   

In this paper, I have presented three alternate program views that help program-

mers avoid selection errors and understand refactoring precondition violations.  

Through a user study, I have demonstrated that these views exhibit several qualities 

that improve the experience of refactoring, help programmers correctly identify prob-

lems with refactoring, and increase speed during several parts of the refactoring proc-

ess.  Alternate views appear to be a promising approach to increasing usability of 

refactoring tools. 

8 Acknowledgements 

Thanks to Suresh Singh and Jim Larson for help during experimental design.  For their 

reviews and advice, I would like to thank Robert Bauer, Paul Berry, Andrew Black, 

Iavor Diatchki, Tom Harke, Brian Huffman, Mark Jones, Chuan-kai Lin, Ralph Lon-

don, Philip Quitslund, Tim Sheard, and Aravind Subhash.  Special thanks to col-

leagues and students who participated in testing and made this research possible. 

9 References 

1. Fowler, M., Beck, K., Brant, J., Opdyke, W. and Roberts, D.: Refactoring: Improving the 

Design of Existing Code. Addison-Wesley Professional (1999) 



 - 20 - 

2. Opdyke, W.: Refactoring Object-Oriented Frameworks.  PhD thesis, University of Illinois 

at Urbana-Champaign (1992) 

3. Roberts, D., Brant, J. and Johnson, R.: A Refactoring Tool for Smalltalk. Theory and Prac-

tice of Object Systems, 3(4):253-263, (1997) 

4. Li, H., Reinke, C. and Thompson, S.: Tool Support for Refactoring Functional Programs. In 

Proc. ACM SIGPLAN Workshop on Haskell. pp. 27-38. ACM, Uppsala, Sweden (2003) 

5. Schrijvers, T., Serebrenik, A. and Demoen, B.: Refactoring Prolog Code. In Proc. 18th 

Workshop on (Constraint) Logic Programming, Potsdam, Germany (2004) 

6. Fowler, M. Crossing Refactoring's Rubicon. 

http://www.martinfowler.com/articles/refactoringRubicon.html, (2001)  

7. The Eclipse Foundation: Eclipse, http://www.eclipse.org, accessed November 2005 

8. Azureus Incorporated: Azureus, http://azureus.sourceforge.net, accessed November 2005 

9. Thomas, A. and Bareshev, D.: GanttProject.  http://ganttproject.sourceforge.net, accessed 

November 2005 

10. JasperSoft Corporation: JasperReports.  http://jasperreports.sourceforge.net/, accessed 

November 2005 

11. Hugunin, J. and Warsaw, B.: Jython, http://www.jython.org, accessed November 2005 

12. Sun Microsystems Incorporated: Java 1.4.2 Standard Libraries. 

http://java.sun.com/j2se/1.4.2/download.html, accessed November 2005 

13. Findler, R., Clements, J., Matthew, Krishnamurthi, S., Steckler, P. and Felleisen, M.: 

DrScheme: A Progamming Environment for Scheme. Journal of Functional Program-

ming, 12(2):159-182, (2002) 

14. Free Software Foundation: Parentheses - GNU Emacs Manual. 

http://www.gnu.org/software/emacs/manual/html_node/Parentheses.html, accessed April 

2006 

15. Adobe Systems Incorporated: Adobe GoLive.  http://www.adobe.com/products/golive, 

accessed November 2005 

16. Hendrix, D., Cross, J., Maghsoodloo, S. and McKinney, M.: Do Visualizations Improve 

Program Comprehensibility? Experiments with Control Structure Diagrams for Java. Hal-

ler, S. (ed.): In Proc. Thirty-First SIGCSE Technical Symposium on Computer Science 

Education, Vol. 32. pp. 382-386. ACM, Austin, Texas (2000) 

17. Joy, W. and Horton, M.: An Introduction to Display Editing with Vi.  

http://www.unixprogram.com/manuals/usd.15.vi.pdf, (1984) 

18. Andersen, T.R.: Extract Method: Error Message Should Indicate Offending Variables. 

https://bugs.eclipse.org/bugs/show_bug.cgi?id=89942, accessed November 2005 

19. Omnicore Software: CodeGuide. http://www.omnicore.com/, accessed November 2005 

20. Xref-Tech: Xrefactory. http://www.xref-tech.com, accessed November 2005 

21. O'Connor, A., Shonle, M. and Griswold, W.: Star Diagram with Automated Refactorings 

for Eclipse. In Proc. OOPSLA Workshop on Eclipse Technology eXchange. ACM, San 

Diego, California (2005) 

22. Astels, D.: Refactoring with UML. In Proc. 3rd Int'l Conference on eXtreme Programming 

and Flexible Processes in Software Engineering. pp. 67-70, Alghero, Italy (2002) 

23. Boger, M., Sturm, T. and Fragemann, P.: Refactoring Browser for UML. In Proc. NetOb-

jectDays on Objects, Components, Architectures, Services, and Applications for a Net-

worked World. pp. 366-377. Springer-Verlag, Erfurt, Germany (2003) 

24. Sunyé, G., Pollet, D., Le Traon, Y. and Jezéquél, J.-M.: Refactoring UML Models. In Proc. 

4th International Conference on the Unified Modeling Language, Modeling Languages, 

Concepts, and Tools. pp. 134-148. Springer-Verlag, Toronto, Ontario, Canada (2001) 

25. Van Gorp, P., Stenten, H., Mens, T. and Demeyer, S.: Towards Automating Source-

Consistent UML Refactorings. Lecture Notes in Computer Science, 2863:144-158, (2003) 

26. Roberts, D.: Practical Analysis for Refactoring.  PhD thesis, University of Illinois at Ur-

bana-Champaign (1999) 



 - 21 - 

Appendix: Posttest Questionnaire (N=16) 

 

Please answer the following questions based on your experience during this test.  If 

you feel it necessary, feel free to write notes in the margin to explain your answers. 

 

Helpfulness 

 

1. I found the mouse/keyboard alone a helpful mechanism for selecting if 

blocks. 

 

0 Strongly Disagree 

9 Disagree 

1 Neutral 

5 Agree 

0 Strongly Agree 

 

2. I found the selection assist tool (green statement highlighter) a helpful 

mechanism for selecting if blocks. 

 

0 Strongly Disagree 

1 Disagree 

0 Neutral 

5 Agree 

10 Strongly Agree 

 

3. I found the statement box view (nested boxes off to the side of the 

code) a helpful mechanism for selecting if blocks. 

 

0 Strongly Disagree 

0 Disagree 

3 Neutral 

7 Agree 

6 Strongly Agree 

 



 - 22 - 

4. I found the extract method wizard (popups that contained an error 

message) a helpful indication of what went wrong when I tried to extract 

a method. 

 

0 Strongly Disagree 

3 Disagree 

3 Neutral 

6 Agree 

3 Strongly Agree 

 

5. I found the extract method annotations (colors/lines on top of code)  a 

helpful indication of what went wrong when I tried to extract a method 

 

0 Strongly Disagree 

0 Disagree 

0 Neutral 

3 Agree 

13 Strongly Agree 

 



 - 23 - 

Likely to Use Again 

 

6. If the selection assist tool (green statement highlighter) were available 

for my usual development environment, I would be likely to use it again. 

 

0 Strongly Disagree 

0 Disagree 

1 Neutral 

3 Agree 

12 Strongly Agree 

 

7. If the statement box view (nested boxes off to the side of the code) 

were available for my usual development environment, I would be likely 

to use it again. 

 

0 Strongly Disagree 

3 Disagree 

3 Neutral 

6 Agree 

4 Strongly Agree 

 

8. If the extract method wizard (popups that contained an error message) 

were available for my usual development environment, I would be likely 

to use them again during the extract method refactoring. 

 

1 Strongly Disagree 

1 Disagree 

4 Neutral 

7 Agree 

3 Strongly Agree 

 

9. If the extract method annotations (colors/lines on top of code) were 

available for my usual development environment, I would be likely to 

use them again during the extract method refactoring. 

 

0 Strongly Disagree 

0 Disagree 

0 Neutral 

1 Agree 

15 Strongly Agree 

 


